We introduce the Conditional Independence Regression CovariancE (CIRCE), a measure of conditional independence for multivariate continuous-valued variables. CIRCE applies as a regularizer in settings where we wish to learn neural features $\varphi(X)$ of data $X$ to estimate a target $Y$, while being conditionally independent of a distractor $Z$ given $Y$. Both $Z$ and $Y$ are assumed to be continuous-valued but relatively low dimensional, whereas $X$ and its features may be complex and high dimensional. Relevant settings include domain-invariant learning, fairness, and causal learning. The procedure requires just a single ridge regression from $Y$ to kernelized features of $Z$, which can be done in advance. It is then only necessary to enforce independence of $\varphi(X)$ from residuals of this regression, which is possible with attractive estimation properties and consistency guarantees. By contrast, earlier measures of conditional feature dependence require multiple regressions for each step of feature learning, resulting in more severe bias and variance, and greater computational cost. When sufficiently rich features are used, we establish that CIRCE is zero if and only if $\varphi(X) \perp \!\!\! \perp Z \mid Y$. In experiments, we show superior performance to previous methods on challenging benchmarks, including learning conditionally invariant image features.
translated by 谷歌翻译
农作物残留物燃烧是世界许多地方的空气污染的主要来源,尤其是南亚。政策制定者,从业人员和研究人员都投资了衡量影响和制定干预措施以减少燃烧。但是,测量燃烧的影响或干预措施的有效性减少燃烧需要数据燃烧的位置。这些数据在成本和可行性方面都在现场收集具有挑战性。我们利用印度旁遮普邦旁遮普邦农作物残留物燃烧的地面监测的数据,以探索使用可访问的卫星图像是否可以更有效地检测到燃烧。具体而言,我们使用了具有高时间分辨率(最多每天)的3M Planetscope数据以及具有每周时间分辨率但光谱信息深度的公共可用Sentinel-2数据。在分析了不同光谱带和燃烧指数单独分离燃烧和未燃烧图的能力之后,我们构建了一个随机森林模型,这些模型确定提供了最大的分离性,并用地面验证的数据评估了模型性能。鉴于测量所带来的挑战,我们的总体模型精度为82%是有利的。基于此过程的见解,我们讨论了检测卫星图像中农作物残留物燃烧的技术挑战,以及衡量燃烧和政策干预措施的影响的挑战。
translated by 谷歌翻译
气候变化增加了损害电力系统可靠性并导致多次设备故障的极端天气事件(风暴,大雨,野火)的数量。实时和准确检测潜在线路故障是减轻极端天气影响并激活紧急控制的第一步。功率平衡方程非线性,极端事件中的发电不确定性增加,缺乏电网可观察性会损害传统数据驱动的失败检测方法的效率。同时,基于神经网络的现代化的机器学习方法需要大量数据来检测事故,尤其是在改变时间的环境中。本文提出了一个具有物理信息的线路故障检测器(字段),该探测器利用网格拓扑信息来减少样本和时间复杂性并提高定位准确性。最后,我们说明了与最先进的方法相比,与各种测试用例相比,我们的方法的优越性实证性能。
translated by 谷歌翻译
交替的电流(AC)偶然受限的最佳功率流(CC-OPF)问题解决了发电不确定性下发电和交付的经济效率。由于可再生能源量大量,后者是现代电网的内在固有的。尽管取得了学术上的成功,但AC CC-OPF问题是高度非线性和计算要求的,这限制了其实际影响。为了改善AC-OPF问题的复杂性/准确性权衡,本文提出了一种快速数据驱动的设置,该设置使用稀疏和混合的高斯流程(GP)框架,以模拟具有输入不确定性的功率流程方程。我们提倡通过数值研究对拟议方法的效率,而与最新方法相比,多个IEEE测试用例的效率快两倍,更准确。
translated by 谷歌翻译
指定的实体识别(NER)或从临床文本中提取概念是识别文本中的实体并将其插入诸如问题,治疗,测试,临床部门,事件(例如录取和出院)等类别的任务。 NER构成了处理和利用电子健康记录(EHR)的非结构化数据的关键组成部分。尽管识别概念的跨度和类别本身是一项具有挑战性的任务,但这些实体也可能具有诸如否定属性,即否定其含义暗示着指定实体的消费者。几乎没有研究致力于将实体及其合格属性一起确定。这项研究希望通过将NER任务建模为有监督的多标签标记问题,为检测实体及其相应属性做出贡献。在本文中,我们提出了3种架构来实现此多标签实体标签:Bilstm N-CRF,Bilstm-Crf-Smax-TF和Bilstm N-CRF-TF。我们在2010 I2B2/VA和I2B2 2012共享任务数据集上评估了这些方法。我们的不同模型分别在I2B2 2010/VA和I2B2 2012上获得最佳NER F1分数为0. 894和0.808。在I2B2 2010/VA和I2B2 2012数据集上,获得的最高跨度微积的F1极性得分分别为0.832和0.836,获得的最高宏观平均F1极性得分分别为0.924和0.888。对I2B2 2012数据集进行的模态研究显示,基于SPAN的微平均F1和宏观平均F1的高分分别为0.818和0.501。
translated by 谷歌翻译
近年来,电力发电已导致美国超过四分之一的温室气体排放。将大量的可再生能源整合到电网中可能是减少电网中碳排放并减缓气候变化的最易于使用的方法。不幸的是,风和太阳能等最容易获得的可再生能源是高度波动的,因此给电网操作带来了很多不确定性,并挑战了现有的优化和控制政策。偶然受限的交流电(AC)最佳功率流(OPF)框架找到了最低成本生成的调度,以保持较低的概率将电网操作保持在安全限制之内。不幸的是,AC-OPF问题的偶然性约束扩展是非登记,计算挑战性的,需要了解系统参数以及有关可再生分布行为的其他假设。已知的线性和凸近似于上述问题,尽管可以进行操作,但对于操作实践来说太保守了,并且不考虑系统参数的不确定性。本文提出了一种基于高斯流程(GP)回归以缩小此差距的替代数据驱动方法。 GP方法学习了一个简单但非凸的数据驱动的近似值,可以包含不确定性输入的交流功率流程。然后,通过考虑输入和参数不确定性,将后者用于有效地确定CC-OPF的解。在众多IEEE测试案例中,说明了使用不同近似值的GP不确定性传播的拟议方法的实际效率。
translated by 谷歌翻译
从数据中揭示馈线拓扑对于提高情境意识和适当利用智能资源在电源分配网格中至关重要。该教程总结,对比和建立了对拓扑识别的最新作品与检测方案之间针对电源分配网格提出的有用联系。%在不同的测量类型,可观察性和采样方面。主要重点是突出使用分配网格中测量设备有限的方法,同时使用电源流体物理和馈线的结构特性来增强拓扑估算。可以从传统的方式或积极地收集相量测量单元或智能电表的网格数据,或者在执行网格资源并测量馈线的电压响应时积极收集。在不同的仪表放置方案下,对馈线可识别性和可检测性的分析主张进行了审查。可以通过具有各种计算复杂性的算法解决方案来确切或大致获得此类拓扑学习主张,从最小二乘拟合到凸优化问题,从图形上的多项式时间搜索到综合计划。该教程渴望为研究人员和工程师提供有关当前可行分配网格学习和对未来工作方向的见解的了解。
translated by 谷歌翻译
Adversarial Imitation Learning (AIL) is a class of popular state-of-the-art Imitation Learning algorithms commonly used in robotics. In AIL, an artificial adversary's misclassification is used as a reward signal that is optimized by any standard Reinforcement Learning (RL) algorithm. Unlike most RL settings, the reward in AIL is $differentiable$ but current model-free RL algorithms do not make use of this property to train a policy. The reward is AIL is also shaped since it comes from an adversary. We leverage the differentiability property of the shaped AIL reward function and formulate a class of Actor Residual Critic (ARC) RL algorithms. ARC algorithms draw a parallel to the standard Actor-Critic (AC) algorithms in RL literature and uses a residual critic, $C$ function (instead of the standard $Q$ function) to approximate only the discounted future return (excluding the immediate reward). ARC algorithms have similar convergence properties as the standard AC algorithms with the additional advantage that the gradient through the immediate reward is exact. For the discrete (tabular) case with finite states, actions, and known dynamics, we prove that policy iteration with $C$ function converges to an optimal policy. In the continuous case with function approximation and unknown dynamics, we experimentally show that ARC aided AIL outperforms standard AIL in simulated continuous-control and real robotic manipulation tasks. ARC algorithms are simple to implement and can be incorporated into any existing AIL implementation with an AC algorithm. Video and link to code are available at: https://sites.google.com/view/actor-residual-critic.
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
在这项工作中,我们研究了缺少数据(ST-MISS)和离群值(强大的ST-MISS)的子空间跟踪问题。我们提出了一种新颖的算法,并为这两个问题提供了保证。与过去在该主题上的工作不同,当前的工作并不强加分段恒定的子空间变更假设。此外,所提出的算法比我们以前的工作要简单得多(使用较少的参数)。其次,我们将方法及其分析扩展到当数据联合到数据时,以及在$ k $对等点点和中心之间的信息交换时,可以证明解决这些问题。我们通过广泛的数值实验来验证理论主张。
translated by 谷歌翻译